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Abstract. We demonstrate the advantages of the wavelet analysis (WA) for resolving the structures in
experimental data on e+e− annihilation into hadron states with quantum numbers of ω meson. The WA
yields a useful set of starting conditions for analysis of ω′ states with multiresonance unitary Breit-Wigner
method. We also apply the WA for the ratio Re+e− .

1 Introduction

The e+e− annihilation experimental data provide several
vector states above 1 GeV. The properties of these states
and even their number are not well established. The main
difficulties encountered in understanding the situation are
large statistical errors in the data and overlapping of these
states decaying into several final channels. In such situ-
ations it is important to resolve structures in the data
before applying any method based on some physical as-
sumptions. It is also important that a description of the
partial wave amplitudes preserves unitarity when reso-
nances ri with the same quantum numbers overlap, i.e.
| Eri − Erj |∼ Γri + Γrj .

We use the wavelet analysis for structure recognition
of the data. It is often said that the WA works like a
“microscope” differentiating between a variety of scales -
both the characteristic scales and the positions of any lo-
cal structures are obtained independently of the general
structure of the data. The wavelet transform smooths out
the experimental data before going into theoretical anal-
ysis i.e., it suppresses statistical noise picking out signals
that would otherwise be obscured. The method is com-
monly used in image and signal processing, and can be
also of considerable interest in the context of experimen-
tal particle and nuclear physics.

The plan of this paper is as follows. In Sect. 2 a brief
discussion of the wavelets is presented. Section 3 gives an
example of the WA of ω′ states in e+e− annihilation. The
wavelet analyzed data are used as an input to study the
partial wave amplitudes. The application of the WA for
“smearing” the ratio Re+e− is presented in conclusion.

a e-mail: vhenner@python.physics.louisville.edu and
henner@psu.ru

2 Wavelets and structure recognition

The wavelets can efficiently detect essential structures in
data sets in a wide range of scales (for example, see the
books of Holschneider [1] or Torresani [2]). Before giving a
very brief description of WA, we would like to note that we
are not the only ones performing a kind of data “optimiza-
tion” in elementary particle physics. To be more specific
let us draw the analogy between this work and the works
on “optimization” of the ratio Re+e− in QCD [3–5]. The
data on Re+e− have a wide range of structures and large
statistical errors, making a direct comparison with QCD
highly impossible. However, a meaningful comparison can
be made provided that some kind of “smearing” procedure
is used. The smeared ratio

R̄e+e−(s,∆) =
∆

π

smax∫

0

Re+e−(s′)
(s′ − s)2 +∆2 ds

′ (1)

was introduced [3] to smooth out any rapid variations in
Re+e− .

The difference between the described procedure and
the analysis to be used for determining resonance param-
eters is that compared to “smearing” we need to resolve
the structures and, what is more important, we need to re-
veal structures corresponding to different scales (“global”
and local). In this sense, the WA seems to be the most ap-
propriate means for achieving this purpose. In Sect. 4 we
will return to the discussion of the ratio Re+e− to demon-
strate that the WA provides a very reasonable and simple
way of its “smearing”.

Over the past few years WA has steadily gained fa-
vor in different areas of physics. Therefore it seems to be
rather strange that it is poorly known in the particle and
nuclear physics even though it can be readily extended
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for studying energy scaling of the data. It was success-
fully applied to the processes of multiple production, as
demonstrated by references in reviews [6], and for study-
ing the angular distributions of secondary particles [7] (see
also our analysis of ρ′ states [8]).

A continuous wavelet transformation of the function
f(t) (the data) is defined as:

w(a, t) = C
− 1

2
ψ a− 1

2

+∞∫

−∞
ψ∗

(
t′ − t

a

)
f(t′)dt′, (2)

where a constant Cψ is obtained in terms of Fourier trans-
formation of ψ(t):

Cψ =

+∞∫

−∞
|ω−1||ψ̂(ω)|2dω , ψ̂(ω) =

+∞∫

−∞
ψ(t)e−iωtdt. (3)

Here, as in most relevant literature, an argument t is
referred to as “time”, even though in our actual problem
it is an energy variable. Decomposition (2) is performed
by convolution of the function f(t) with a biparametric
family of self-similar functions generated by dilatation and
translation of the analyzing function ψ(t), called wavelet:

ψa,b(t) = ψ

(
t− b

a

)
, (4)

where the scale parameter a characterizes the dilatation,
and b characterizes the translation in time or space. It is
a kind of “window function” with non-constant window’s
width: high frequency wavelets are narrow (due to the fac-
tor 1/a), while low frequency wavelets are much broader.
The function ψ(t) should be well localized in both time
and Fourier spaces and must obey the admissibility con-

dition,
+∞∫
−∞

ψ(t)dt = 0. This condition requires that ψ must

be an oscillatory (but with the limited support) function
and, if the integrals (3) converge, the completeness of the
wavelet functions provides the existence of inverse trans-
formation:

f(t) = C
− 1

2
ψ

+∞∫

−∞

+∞∫

0

ψ

(
t− t′

a

)
w(a, t′)

dt′da
a5/2 . (5)

The wavelets with a good localization in physical space
and with a small number of oscillation are commonly used
to recognize the local features of data, and to find the
parameters of dominating structures (location and scale/
width). In this work, we use one of the most popular
wavelets of this type, the so-called ‘Mexican Hat’(MH)
function

ψ(t) = (1 − t2)e−t2/2. (6)

A very helpful representation of the WT revealing the
whole spectrum of the signal features is the “time-
frequency” plane. This is a multiresolution spectrogram,

which shows the frequency (scale) contents of the signal
as a function of time. Each pixel on the spectrogram rep-
resents w(a, t) for a particular a (scale) and t (time). The
location of spots on the vertical axis (scale axis, a) cor-
responds to the width of the maximum. The intensity of
dark spots shows the amplitudes of maxima. The noise is
located at the bottom of the wavelet plane (small scale re-
gions, or high frequencies). In order to separate the signal
from the background noise, the wavelet reconstruction is
performed for scales (scale parameter values) greater than
a certain scale anoise, which will be termed the boundary
(or cut-off) scale. In deciding on the appropriate bound-
ary scale that will separate the noise-like high frequency
components of data we hold to a pragmatic line of rea-
soning: the best option of anoise is the smallest one, which
will smooth out any rapid variations in data and enable us
to reproduce stable results for low frequencies (resonance
area). A similar pragmatic strategy was applied in [3,4] to
choose the parameter ∆ that should be reasonably high to
compare the smeared R̄e+e− with QCD models, but not
too large to be able to keep some fine details of the data.

The reconstructed data are obtained using the inverse
transformation (5)

fr(t) =< f > +C− 1
2

ψ

amax∫

anoise

tmax∫

tmin

ψa,t(t′)w(a, t′)
dt′da
a5/2 . (7)

The < f > must be added to the reconstructed signal to
restore the mean value of the original signal (the mean
value of the WT is zero because an average value of any
wavelet is zero). Formula (7) in the limit anoise → 0,
amax → ∞, tmin → −∞, tmax → +∞ is equivalent to
exact relation (5), but in practice a limited number of ex-
perimental points on the restricted energy interval leads
to a limited domain in the integral (7). To fill in the gaps
between the experimental points we use a linear interpo-
lation. In practice, different interpolations lead to a small
difference in the restored signal (which gives a very small
difference on a lower part of the wavelet plane correspond-
ing to noise). Note also that one of the advantages of the
WA is a fairly low sensitivity of the restored signal to any
physically reasonable continuation of the “data” outside
the interval (tmin, tmax) where the data are known.

3 ω′ states:
Combined wavelet and BW analysis

The analysis was performed for ρ′ and ω′ states but for
the sake of clarity we present the case of ω′ states only
(it involves a smaller number of states and channels than
those related with the ρ′ states).

The wavelet planes shown in Figs. 1 and 2 for the pro-
cesses e+e− → π+π−π0 [9,10], and e+e− → ωππ [11]
clearly display two ω′ states approximately at 1.4 and 1.6
GeV. The wavelet transformation images obtained with
the MH wavelet are shown at the top of the diagrams. The
WT localizes the structures in a fashion that allows us to
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Fig. 1a,b. Cross-section e+e− → π+π−π0

estimate the masses of the resonances and their widths.
The straight horizontal lines correspond to the bound-
ary scale anoise which cuts off the small scale structures.
The curves in the figures represent reconstructed data ob-
tained by the inverse transformation technique(7). A spot
in Fig. 2b at 1.85 GeV indicates one more possible state,
but the location of this spot along the vertical axis shows
that this state is sensitive to the cut-off value anoise.

Due to overlapping, the observed positions of maxima
can differ from the physical resonance masses, and partial
and total widths can essentially differ from preliminary
estimations. Coherent fitting of amplitudes in a proper
partial wave analysis (in unitary BW analysis for simpler
cases) may be better suited. The WA in this case yields a
useful set of starting conditions for a more accurate anal-
ysis.

The interference of the resonances with the same decay
channels is the key aspect of any analysis and interpreta-
tion. In the Breit-Wigner (BW) approach this interference
is often taken into account by relative phases in BW terms,
which are treated as free parameters, the most common
choices being 0 or π. The results of analysis critically de-
pend on the choice of the phase set. Whether these phases
are included or not, such a sum of BW terms looses uni-
tarity, which is the basic point in the BW description.

Fig. 2a,b. Cross-section e+e− → ωππ

There are several approaches preserving unitarity, for
example an often used K-matrix method. Contrary to this
approach, the BW method directly provides the physical
parameters of the resonances, their masses, widths and
branching fractions.

Let us briefly formulate BW method preserving unitar-
ity (details and relation to different methods are described
in [12,13]). Let the partial wave amplitudes be written as

fij(s) =
N∑
r=1

mrΓrgrigrj
s−m2

r + imrΓr

=
N∑
r=1

ei(ϕri+ϕrj)mrΓr | gri || grj |
s−m2

r + imrΓr
, (8)

where the energy independent relative phases ϕri are not
free parameters but should be determined in such a way
as to preserve unitarity (note, that the number of free
parameters is smaller than or equal to that in a “naive”
BW or K matrix approach). Here we employ an approxi-
mation of energy independent widths, which is commonly
used for vector states. Index i = 1 corresponds to the ini-
tial state e+e− (or to the virtual photon), index j = 2, 3
corresponds to the final states ρπ and ωππ (which are the
two main channels of the ω′ states decay [14]), index r
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Table 1. Parameters of the ω′ states (in GeV)

Meson Mass Width

ω′
1 1.450 ± 0.010 0.199 ± 0.015

ω′
2 1.619 ± 0.005 0.250 ± 0.014

Table 2. Branching ratios of the ω′ states (in %)

State ω′
1 ω′

2

e+e− (23 ± 1.0)10−5 (32 ± 1.0)10−5

ρπ 69.92 ± 2.85 38.03 ± 1.37
ωππ 30.08 ± 2.85 61.97 ± 1.36

enumerates two ω′ states (ω−φ contribution is included),
gri are coupling constants.

A comparison of the reconstructed signals and expres-
sion (8) gives a good fit with χ2/nD of about 1.3. In Figs. 1
and 2 reconstruction is shown by a solid line, and fit by a
dotted line. (Experimental data [11] are multiplied by the
factor 1.5 to include unobserved ωπ0π0 state.) Starting
from the WA masses (and widths) we allow large devi-
ations of about 150 MeV from these positions in either
direction. The masses and widths are listed in Table 1,
the branching ratios are listed in Table 2 (the leptonic
width obtained from this table are Γω′

1→e+e− ≈ 0.46keV
and Γω′

2→e+e− ≈ 0.80keV ). The error bars for the result-
ing parameters have been derived as the square roots of
the diagonal elements of the covariance matrix of param-
eters’ estimations. All the parameters are in good agree-
ment with PDG review [14].

4 Conclusion

Numerous applications of wavelets to data analysis in dif-
ferent fields of mathematics and physics have proved them
to be a powerful tool for studying the fractal data. This
technique can be successfully applied to some problems of
nuclear and high-energy physics where the wavelet analy-
sis will work as a tool for studying energy scaling of the
process.

We performed the WA of the data in order to clear out
the resonance contribution. Due to good scaling proper-
ties of the wavelets we can consider the data with various
resolution which allows us to separate the resonances from
noise and from each other. Such a local analysis (and the
corresponding reconstruction) is very significant when it
is necessary to distinguish between several resonances in
the data with large errors.

The WA shows that some experimental data are sta-
tistically inadequate in the sense that they do not allow
separation of the noise contribution. This fact emphasizes
an apparent virtue of the method which provides criteria
for distinguishing between “stable” and “unstable” data -
the latter do not reproduce the same essential structures
when the contribution of the experimental noise changes
slightly. Technically it means that the structure (reso-

Fig. 3. Ratio Re+e−

nance) is questionable if it is sensitive to the noise cut-off
value. Interestingly, this criterion supports ρ′ and ω′ states
at about 1.45 and 1.65−1.70 GeV in accord with the sum-
mary paper on vector mesons [14] that includes only these
states as reliably established. We obtained the parameters
of these two ω′ states by applying the BW unitary method
to the wavelet analyzed data, and they agree fairly well
with those in [14]. The only conclusion suggesting itself
from WA about the states differing from these two states
is that their existence is consistent with the experimental
data, although the cross sections measurement accuracy
should be improved.

To conclude this paper, let us return to the ratio Re+e−

to demonstrate another application of the wavelet tech-
nique to high-energy physics. To smooth out any rapid
variations in Re+e− we may remove high frequency noise
with WT, which provides a smearing alternative to the
procedure (1). The wavelet approach is ideally suited for
this purpose because of its multiscale nature. The restored
data in the Fig. 3 (experimental points are from [14]) keep
all main features of Re+e− with statistical errors and
threshold singularities damped, which allows a direct com-
parison with the corresponding QCD smeared quantity.
The stability of restored data at fairly large variations of
the cut-off scale reflects the quality of the Re+e− data.

We restored the Re+e− on the same interval as in the
works [3,4], from about 1.4 to 7.5 GeV. It is interesting
to compare how the resonances and E < 1.4 and E > 7.5
GeV regions have been treated in [3,4] and in our ap-
proach. With the approach developed in [3] it was neces-
sary to exclude the sharp resonances, ψ,ψ′, etc. from the
data to calculate the integral (1). Moreover, it was nec-
essary to exclude a rather wide ρ peak that substantially
contributes to (1). Then a term was added to account for
the contribution from smax to ∞, assuming that Re+e−

remains constant above smax ≈ 60GeV 2. Originally, the
smearing procedure [3] supposes a global constant value
of ∆ in (1) (in [3] a value ∆ = 3GeV 2 was used). How-
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ever it was found out [4] that for different energy regions
it would be better to use different values of ∆. Note, that
using of energy dependent ∆ in (1) in some sense reflects
the necessity of using different scales. With the WA ap-
proach there is no need to remove the resonances by hand
- the sharp resonances are getting just a part of high fre-
quency noise background and the ρ meson contribution in
the smeared Re+e− is possible to evaluate. Above 1.5 GeV,
for a large cut-off value anoise, the ρ meson contribution
just gives some small vertical shift for the restored curve -
the dotted curve on the Fig. 3 is obtained by including all
experimental points above 2mπ threshold, and the dashed
curve is obtained when the data from the threshold were
continued to the first on the figure’s experimental point
at about 1.4 GeV using a linear approximation (thus ex-
cluding the ρ peak). When the cut-off value anoise is in-
creasing, the difference between these two curves becomes
very small - the corresponding reconstructed data for the
value anoise = 0.6 are represented by the dashed-dotted
line. The contribution of the interval well beyond 8 GeV
(we use the data from [14] up to 60 GeV) to the restored
data is negligible below 8 GeV. Any continuations used
above 60 GeV contribute nothing. As seen in Fig. 3, our
WA smeared ratio Re+e− is in good agreement with the
theoretical prediction (solid line, [5]) for QCD smeared
ratio.
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